Visual Neuroscience Lab
  • Home
  • Neurodesktop
  • Behavioral
  • Labmeeting
  • DICOM to GLM
  • MRI
  • People
  • Other Topics
  • Archive
  1. Behavioral
  2. BIDS for behavioral studies
  • Home
  • Neurodesktop
  • MRI: from DICOM to GLM Analysis
    • 01 - DICOM to BIDS
    • 02 - T1w for PBn
    • 03 - Defacing
    • 04 - Removing Noise Scan
    • 05 - fmriprep
    • 06 - first level GLM
    • Troubleshooting
  • MRI
    • Retinotopic Mapping
    • 3D printing a brain
    • 7T anatomical analysis on neurodesk
    • MRI BIDS and OSF
    • fMRIprep analysis
    • Old MRI setup
    • Update to the MRI lab setup
    • Physiological noise correction
  • Behavioral
    • Vision tests
    • BIDS for behavioral studies
    • Custom-built chin rests
  • People
    • Stipends and prizes for master students
    • Coffee time
    • Participant compensation
    • Things to do if you are leaving the lab
    • Scientific writing in practice
    • Interns
    • Pflichtpraktikum
  • Other Topics
    • Calculating a priori sample size using G Power
    • Gamma correction
    • Contribute to the website
    • Lab Members Only!!!
  • Labmeeting
  • Archive

On this page

  • Resources
  • Software:
  • How to implement
    • After preprocessing:
    • Before finalizing everything:
    • Pipeline for transriv project as an example
  1. Behavioral
  2. BIDS for behavioral studies

BIDS for behavioral studies

BIDS
Behavioral
How to store your data in bids structure if you are using psychtoolbox
Author

CY

Published

May 23, 2024

Resources

Behavioral experiments (with no neural recordings) - Brain Imaging Data Structure v1.9.0

Software:

bids-matlab |

bids-starter-kit on GitHub |

JSONio on GitHub

How to implement

You may use the template in the BIDS starter kit (bids-starter-kit/general). Simply copy the corresponding mat file and modify the variables for your project.

After preprocessing:

create_events_tsv_json_full.m

Before finalizing everything:

createBIDS_participants_tsv.m

createBIDS_dataset_description_json.m

Pipeline for transriv project as an example

  • Add ‘transriv-bids’ to matlab path

  • Go to the root_dir or use the full path of root_dir as input to the functions

  • Preprocess data from a subject:

createBIDS_beh_after_preprocessing(root_dir, ‘transriv’, ‘S001’, ‘Rivalry’, ‘GG’)

  • Create dataset files by running transriv_finalizeBIDS.m (when data collection is finished)

The folder structure based on BIDS:

root_dir
  └─ ‘transriv’
        ├─ participants.xlsx
        ├─ participants.tsv
        ├─ participants.json
        ├─ sourcedata
        │     └─ sub-S001
        │         └─ ses-Rivalry
        │               └─ beh
        │                   └─ sub-S001_ses-Rivalry_run-GG_beh.mat
        └─ rawdata
             └─ sub-S001
                 └─ ses-Rivalry
                     └─ beh
                         ├─ sub-S001_ses-Rivalry_run-GG_beh.json
                         └─ sub-S001_ses-Rivalry_run-GG_beh.tsv

Link to our GitHub repo containing relevant scripts

Back to top